Stopping-time resampling for sequential Monte Carlo methods
نویسندگان
چکیده
Motivated by the statistical inference problem in population genetics, we present a new sequential importance sampling with resampling strategy. The idea of resampling is key to the recent surge of popularity of sequential Monte Carlo methods in the statistics and engineering communities, but existing resampling techniques do not work well for coalescent-based inference problems in population genetics. We develop a new method called ‘stopping-time resampling’, which allows us to compare partially simulated samples at different stages to terminate unpromising partial samples and to multiply promising samples early on.To illustrate the idea, we first apply the new method to approximate the solution of a Dirichlet problem and the likelihood function of a non-Markovian process. Then we focus on its application in population genetics. All our examples show that the new resampling method can significantly improve the computational efficiency of existing sequential importance sampling methods.
منابع مشابه
On Using Truncated Sequential Probability Ratio Test Boundaries for Monte Carlo Implementation of Hypothesis Tests.
When designing programs or software for the implementation of Monte Carlo (MC) hypothesis tests, we can save computation time by using sequential stopping boundaries. Such boundaries imply stopping resampling after relatively few replications if the early replications indicate a very large or very small p-value. We study a truncated sequential probability ratio test (SPRT) boundary and provide ...
متن کاملA Sequential Monte Carlo Approach to Computing Tail Probabilities in Stochastic Models
Sequential Monte Carlo methods which involve sequential importance sampling and resampling are shown to provide a versatile approach to computing probabilities of rare events. By making use of martingale representations of the sequential Monte Carlo estimators, we show how resampling weights can be chosen to yield logarithmically efficient Monte Carlo estimates of large deviation probabilities ...
متن کاملComputational intelligence sequential Monte Carlos for recursive Bayesian estimation
Recursive Bayesian estimation using sequential Monte Carlos methods is a powerful numerical technique to understand latent dynamics of non-linear non-Gaussian dynamical systems. Classical sequential Monte Carlos suffer from weight degeneracy which is where the number of distinct particles collapse. Traditionally this is addressed by resampling, which effectively replaces high weight particles w...
متن کاملEfficient Block Sampling Strategies for Sequential Monte Carlo Methods
Sequential Monte Carlo (SMC) methods are a powerful set of simulation-based techniques for sampling sequentially from a sequence of complex probability distributions. These methods rely on a combination of importance sampling and resampling techniques. In a Markov chain Monte Carlo (MCMC) framework, block sampling strategies often perform much better than algorithms based on one-at-a-time sampl...
متن کاملPruned Resampling: Probabilistic Model Selection Schemes for Sequential Face Recognition
This paper proposes probabilistic pruning techniques for a Bayesian video face recognition system. The system selects the most probable face model using model posterior distributions, which can be calculated using a Sequential Monte Carlo (SMC) method. A combination of two new pruning schemes at the resampling stage significantly boosts computational efficiency by comparison with the original o...
متن کامل