Stopping-time resampling for sequential Monte Carlo methods

نویسندگان

  • Yuguo Chen
  • Junyi Xie
  • Jun S. Liu
  • J. S. Liu
چکیده

Motivated by the statistical inference problem in population genetics, we present a new sequential importance sampling with resampling strategy. The idea of resampling is key to the recent surge of popularity of sequential Monte Carlo methods in the statistics and engineering communities, but existing resampling techniques do not work well for coalescent-based inference problems in population genetics. We develop a new method called ‘stopping-time resampling’, which allows us to compare partially simulated samples at different stages to terminate unpromising partial samples and to multiply promising samples early on.To illustrate the idea, we first apply the new method to approximate the solution of a Dirichlet problem and the likelihood function of a non-Markovian process. Then we focus on its application in population genetics. All our examples show that the new resampling method can significantly improve the computational efficiency of existing sequential importance sampling methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Using Truncated Sequential Probability Ratio Test Boundaries for Monte Carlo Implementation of Hypothesis Tests.

When designing programs or software for the implementation of Monte Carlo (MC) hypothesis tests, we can save computation time by using sequential stopping boundaries. Such boundaries imply stopping resampling after relatively few replications if the early replications indicate a very large or very small p-value. We study a truncated sequential probability ratio test (SPRT) boundary and provide ...

متن کامل

A Sequential Monte Carlo Approach to Computing Tail Probabilities in Stochastic Models

Sequential Monte Carlo methods which involve sequential importance sampling and resampling are shown to provide a versatile approach to computing probabilities of rare events. By making use of martingale representations of the sequential Monte Carlo estimators, we show how resampling weights can be chosen to yield logarithmically efficient Monte Carlo estimates of large deviation probabilities ...

متن کامل

Computational intelligence sequential Monte Carlos for recursive Bayesian estimation

Recursive Bayesian estimation using sequential Monte Carlos methods is a powerful numerical technique to understand latent dynamics of non-linear non-Gaussian dynamical systems. Classical sequential Monte Carlos suffer from weight degeneracy which is where the number of distinct particles collapse. Traditionally this is addressed by resampling, which effectively replaces high weight particles w...

متن کامل

Efficient Block Sampling Strategies for Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC) methods are a powerful set of simulation-based techniques for sampling sequentially from a sequence of complex probability distributions. These methods rely on a combination of importance sampling and resampling techniques. In a Markov chain Monte Carlo (MCMC) framework, block sampling strategies often perform much better than algorithms based on one-at-a-time sampl...

متن کامل

Pruned Resampling: Probabilistic Model Selection Schemes for Sequential Face Recognition

This paper proposes probabilistic pruning techniques for a Bayesian video face recognition system. The system selects the most probable face model using model posterior distributions, which can be calculated using a Sequential Monte Carlo (SMC) method. A combination of two new pruning schemes at the resampling stage significantly boosts computational efficiency by comparison with the original o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003